Degrees, Dimensions, and Crispness

David Jaz Myers

Johns Hopkins University

March 15, 2019

David Jaz Myers (Johns Hopkins University) Degrees, Dimensions, and Crispness

3

Outline

- The upper naturals.
- The algebra of polynomials, three ways.
- Crisp things have natural number degree / dimension.

The Logic of Space

Space-y-ness of your domains of discourse

 \Leftrightarrow

Constructiveness of the (native) logic about things in those domains

Logical Connectivity

Definition

A proposition $U: A \rightarrow \mathbf{Prop}$ is **logically connected** if for all $P: A \rightarrow \mathbf{Prop}$, if $\forall a. Ua \rightarrow Pa \lor \neg Pa$, then either $\forall a. Ua \rightarrow Pa$ or $\forall a. Ua \rightarrow \neg Pa.$

くほと くほと くほと

Logical Connectivity

Definition

A proposition $U : A \rightarrow \mathbf{Prop}$ is **logically connected** if for all $P : A \rightarrow \mathbf{Prop}$, if $\forall a. \ Ua \rightarrow Pa \lor \neg Pa$, then either $\forall a. \ Ua \rightarrow Pa$ or $\forall a. \ Ua \rightarrow \neg Pa$.

Lemma

If $U : A \to \mathbf{Prop}$ is logically connected and $f : A \to B$, then its image $\operatorname{im}(U) :\equiv \lambda b$. $\exists a. f(a) = b \land Ua : B \to \mathbf{Prop}$ is logically connected.

伺下 イヨト イヨト ニヨ

Logical Connectivity

Definition

A proposition $U : A \rightarrow \mathbf{Prop}$ is **logically connected** if for all $P : A \rightarrow \mathbf{Prop}$, if $\forall a. \ Ua \rightarrow Pa \lor \neg Pa$, then either $\forall a. \ Ua \rightarrow Pa$ or $\forall a. \ Ua \rightarrow \neg Pa$.

Lemma

If $U : A \to \mathbf{Prop}$ is logically connected and $f : A \to B$, then its image $\operatorname{im}(U) :\equiv \lambda b$. $\exists a. f(a) = b \land Ua : B \to \mathbf{Prop}$ is logically connected.

Lemma

If A has decidable equality (either a = b or $a \neq b$), then a logically connected $U : A \rightarrow \mathbf{Prop}$ has at most one element.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Suppose R is a ring. Naively, taking the degree of a polynomial should give a map

deg : $R[x] \rightarrow \mathbb{N}$

くほと くほと くほと

• Suppose *R* is a ring. Naively, taking the degree of a polynomial should give a map

 $\mathsf{deg}: R[x] \to \mathbb{N}$

• But suppose that *R* is logically connected and for *r* : *R* consider the polynomial *rx*.

• Suppose *R* is a ring. Naively, taking the degree of a polynomial should give a map

 $\mathsf{deg}: R[x] \to \mathbb{N}$

- But suppose that *R* is logically connected and for *r* : *R* consider the polynomial *rx*.
- Then deg(rx) : \mathbb{N} , so that

 $\lambda r. \deg(rx) : R \to \mathbb{N}.$

But *R* is connected and \mathbb{N} has decidable equality, so this map must be constant (by the lemma).

• Suppose *R* is a ring. Naively, taking the degree of a polynomial should give a map

 $\mathsf{deg}: R[x] \to \mathbb{N}$

- But suppose that *R* is logically connected and for *r* : *R* consider the polynomial *rx*.
- Then deg(rx) : \mathbb{N} , so that

 $\lambda r. \deg(rx) : R \to \mathbb{N}.$

But R is connected and \mathbb{N} has decidable equality, so this map must be constant (by the lemma).

• Of course, deg(x) = 1 and deg(0) = 0, so this proves 1 = 0, which is an issue.

・ 何 ト ・ ヨ ト ・ ヨ ト

So there's a problem with the naturals – they are too *discrete*. How do we fix this?

► < ∃ ►</p>

So there's a problem with the naturals – they are too *discrete*. How do we fix this?

To solve this, we need to find another problem with the natural numbers: one from **logic**.

So there's a problem with the naturals – they are too *discrete*. How do we fix this?

To solve this, we need to find another problem with the natural numbers: one from **logic**.

Proposition

The law of excluded middle (LEM) is equivalent to the well-ordering principle (WOP) for $\mathbb{N}.$

Proof.

That the classical naturals satisfy WOP is routine. Let's show that the well-ordering of $\mathbb N$ implies LEM.

So there's a problem with the naturals – they are too *discrete*. How do we fix this?

To solve this, we need to find another problem with the natural numbers: one from **logic**.

Proposition

The law of excluded middle (LEM) is equivalent to the well-ordering principle (WOP) for $\mathbb{N}.$

Proof.

That the classical naturals satisfy WOP is routine. Let's show that the well-ordering of \mathbb{N} implies LEM.

Given a proposition P: **Prop**, define $\overline{P} : \mathbb{N} \to \mathbf{Prop}$ by $\overline{P}(n) :\equiv P \lor 1 \leq n$ and note that $\overline{P}(0) = P$.

So there's a problem with the naturals – they are too *discrete*. How do we fix this?

To solve this, we need to find another problem with the natural numbers: one from **logic**.

Proposition

The law of excluded middle (LEM) is equivalent to the well-ordering principle (WOP) for $\mathbb{N}.$

Proof.

That the classical naturals satisfy WOP is routine. Let's show that the well-ordering of $\mathbb N$ implies LEM.

Given a proposition $P : \mathbf{Prop}$, define $\overline{P} : \mathbb{N} \to \mathbf{Prop}$ by $\overline{P}(n) :\equiv P \lor 1 \leq n$ and note that $\overline{P}(0) = P$. The least number satisfying \overline{P} is 0 or not depending on whether P or $\neg P$; since equality of naturals is decidable, either P or $\neg P$.

In other words,

The naturals are not complete as a **Prop**-category.

-

3

In other words,

The naturals are not complete as a **Prop**-category.

So, let's freely complete them! We will replace a natural number $n : \mathbb{N}$ by its upper bounds $\lambda m. n \leq m : \mathbb{N} \to \mathbf{Prop}$.

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals. (As a **Prop**-category, this is $(\mathbf{Prop}^{\mathbb{N}})^{\mathsf{op}}$)

In other words,

The naturals are not complete as a **Prop**-category.

So, let's freely complete them! We will replace a natural number $n : \mathbb{N}$ by its upper bounds $\lambda m. n \leq m : \mathbb{N} \to \mathbf{Prop}$.

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals. (As a **Prop**-category, this is $(\mathbf{Prop}^{\mathbb{N}})^{\mathsf{op}}$)

• We think of an upper natural $N : \mathbb{N}^{\uparrow}$ as a natural "defined by its upper bounds":

Nn holds if n is an upper bound of N.

In other words,

The naturals are not complete as a **Prop**-category.

So, let's freely complete them! We will replace a natural number $n : \mathbb{N}$ by its upper bounds $\lambda m. n \leq m : \mathbb{N} \to \mathbf{Prop}$.

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals. (As a **Prop**-category, this is $(\mathbf{Prop}^{\mathbb{N}})^{\mathsf{op}}$)

• We think of an upper natural $N : \mathbb{N}^{\uparrow}$ as a natural "defined by its upper bounds":

Nn holds if n is an upper bound of N.

 For N, M : N[↑], say N ≤ M when every upper bound of M is an upper bound of N.

• • = • • = •

Naturals and Upper Naturals

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals.

Every natural $n : \mathbb{N}$ gives an upper natural $n^{\uparrow} : \mathbb{N}^{\uparrow}$ by the Yoneda embedding:

$$n^{\uparrow}(m):\equiv n\leq m.$$

and we define $\infty^{\uparrow} :\equiv \lambda_{-}$. False.

Naturals and Upper Naturals

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals.

Every natural $n : \mathbb{N}$ gives an upper natural $n^{\uparrow} : \mathbb{N}^{\uparrow}$ by the Yoneda embedding:

$$n^{\uparrow}(m):\equiv n\leq m.$$

and we define $\infty^{\uparrow} :\equiv \lambda_{-}$. False.

An upper natural $N : \mathbb{N}^{\uparrow}$ is **bounded** if there exists an upper bound $n : \mathbb{N}$ of N (that is, if $\exists n. Nn$).

Naturals and Upper Naturals

Definition

The **upper naturals** \mathbb{N}^{\uparrow} are the type of upward closed propositions on the naturals.

Every natural $n : \mathbb{N}$ gives an upper natural $n^{\uparrow} : \mathbb{N}^{\uparrow}$ by the Yoneda embedding:

$$n^{\uparrow}(m):\equiv n\leq m.$$

and we define $\infty^{\uparrow} :\equiv \lambda_{-}$. False.

An upper natural $N : \mathbb{N}^{\uparrow}$ is **bounded** if there exists an upper bound $n : \mathbb{N}$ of N (that is, if $\exists n. Nn$).

We can take the minimum upper natural satisfying a proposition:

$$\mathsf{min}:(\mathbb{N}\to\mathsf{Prop})\to\mathbb{N}^{\uparrow}$$

by

$$(\min P)n :\equiv \exists m \leq n. Pm$$

Upper Arithmetic

Definition

min :
$$(\mathbb{N} \to \mathbf{Prop}) \to \mathbb{N}^{\uparrow}$$

 $P \mapsto \lambda n. \exists m \leq n. Pm$

Lemma

For $P : \mathbb{N} \to \mathbf{Prop}$, min $P = n^{\uparrow}$ if and only if *n* is the least number satisfying *P*.

We can define the arithmetic operations for upper naturals by Day convolution: (with $N, M : \mathbb{N}^{\uparrow}$)

•
$$(N + M)n :\equiv \exists a, b : \mathbb{N} . Na \land Mb \land (a + b \le n).$$

3

• • = • • = •

Upper Arithmetic

Definition

$$\begin{split} \mathsf{min}: (\mathbb{N} \to \mathsf{Prop}) \to \mathbb{N}^{\uparrow} \\ P \mapsto \lambda n. \, \exists m \leq n. \, Pm \end{split}$$

Lemma

For $P : \mathbb{N} \to \mathbf{Prop}$, min $P = n^{\uparrow}$ if and only if *n* is the least number satisfying *P*.

We can define the arithmetic operations for upper naturals by Day convolution: (with $N, M : \mathbb{N}^{\uparrow}$)

•
$$(N + M)n :\equiv \exists a, b : \mathbb{N} . Na \land Mb \land (a + b \le n).$$

•
$$(N \cdot M)n :\equiv \exists a, b : \mathbb{N} \cdot Na \wedge Mb \wedge (ab \leq n).$$

3

Upper Arithmetic

Definition

min :
$$(\mathbb{N} \to \mathbf{Prop}) \to \mathbb{N}^{\uparrow}$$

 $P \mapsto \lambda n. \exists m \leq n. Pm$

Lemma

For $P : \mathbb{N} \to \mathbf{Prop}$, min $P = n^{\uparrow}$ if and only if *n* is the least number satisfying *P*.

We can define the arithmetic operations for upper naturals by Day convolution: (with $N, M : \mathbb{N}^{\uparrow}$)

- $(N + M)n :\equiv \exists a, b : \mathbb{N} . Na \land Mb \land (a + b \le n).$
- $(N \cdot M)n :\equiv \exists a, b : \mathbb{N} \cdot Na \wedge Mb \wedge (ab \leq n).$
- And one can prove the expected identities by the usual Day convolution arguments.

Upper Naturals in Models

• In localic models, \mathbb{N}^{\uparrow} is the sheaf of upper semi-continuous functions valued in $\mathbb{N}.$

Upper Naturals in Models

- In localic models, \mathbb{N}^{\uparrow} is the sheaf of upper semi-continuous functions valued in $\mathbb{N}.$
- (Hartshorne (1977) Example III.12.7.2) If Y is a Noetherian scheme and \mathcal{F} a coherent sheaf of modules on Y, then

$$y \mapsto \dim_{k(y)}(\mathcal{F}_y \otimes k(y))$$

is an upper-semicontinuous function $Y \to \mathbb{N}$, and therefore a global section of $\mathbb{N}^{\uparrow} \in \mathbf{Sh}(Y)$.

Upper Naturals in Models

- In localic models, \mathbb{N}^{\uparrow} is the sheaf of upper semi-continuous functions valued in $\mathbb{N}.$
- (Hartshorne (1977) Example III.12.7.2) If Y is a Noetherian scheme and \mathcal{F} a coherent sheaf of modules on Y, then

$$y \mapsto \dim_{k(y)}(\mathcal{F}_y \otimes k(y))$$

is an upper-semicontinuous function $Y \to \mathbb{N}$, and therefore a global section of $\mathbb{N}^{\uparrow} \in \mathbf{Sh}(Y)$.

• For more on the upper naturals in a localic setting, see Section II.5 of Blechschmidt (2017). (There they are called *generalized naturals*)

Cardinality

As an example of what we can define with upper naturals that we couldn't with naturals, consider:

Definition

Define the (finite) cardinality of a type as

Card : **Type** $\rightarrow \mathbb{N}^{\uparrow}$ $X \mapsto \min (\lambda n. ||[n] \simeq X||)$

Cardinality

As an example of what we can define with upper naturals that we couldn't with naturals, consider:

Definition

Define the (finite) cardinality of a type as

 $\begin{aligned} \mathbf{Card} : \mathbf{Type} &\to \mathbb{N}^{\uparrow} \\ X &\mapsto \min \left(\lambda n. \| [n] \simeq X \| \right) \end{aligned}$

(or, the Kuratowski cardinality by $X \mapsto \min(\lambda n. \exists f : [n] \twoheadrightarrow X))$

通 と く ヨ と く ヨ と

Cardinality

As an example of what we can define with upper naturals that we couldn't with naturals, consider:

Definition

Define the (finite) cardinality of a type as

Card : **Type** $\rightarrow \mathbb{N}^{\uparrow}$ $X \mapsto \min (\lambda n. ||[n] \simeq X||)$

(or, the Kuratowski cardinality by $X \mapsto \min(\lambda n. \exists f : [n] \twoheadrightarrow X))$

Proposition

We have the expected equations:

•
$$Card(X + Y) = Card(X) + Card(Y)$$
.

• $Card(X \times Y) = Card(X) \cdot Card(Y)$.

•
$$Card(X +_U Y) = Card(X) + Card(Y) - Card(U).*$$

To define the degree of a polynomial, we need to define the algebra of polynomials. In the following, let R be a ring.

Definition

For a type *I*, the **free** *R*-**algebra on** *I*, $R[x_i | i : I]$ is the higher inductive type generated by

- $x: I \rightarrow R[x_i \mid i:I]$
- struct : *R*-algebra structure on *R*[*x_i* | *i* : *I*]

通 と く ヨ と く ヨ と

To define the degree of a polynomial, we need to define the algebra of polynomials. In the following, let R be a ring.

Definition

For a type *I*, the **free** *R*-**algebra on** *I*, $R[x_i | i : I]$ is the higher inductive type generated by

•
$$x: I \rightarrow R[x_i \mid i:I]$$

• struct : R-algebra structure on $R[x_i | i : I]$

Proposition

Let A be an R-algebra and I a type. Then evaluating at $x : I \rightarrow R[x_i \mid i : I]$ gives an equivalence

$$(I \rightarrow A) \simeq \mathbf{Alg}_R(R[x_i \mid i:I], A).$$

3

(日) (周) (三) (三)

This gives a straightforward definition of R[x] as $R[x_i | i : *]$.

- 4 同 6 4 日 6 4 日 6

This gives a straightforward definition of R[x] as $R[x_i | i : *]$.

But it's not immediately clear how to define the degree of a polynomial using this definition. Let's give another:

Definition

Define $R[x]^s$ to be the type of eventually vanishing sequences in R. That is

$$R[x]^{s} :\equiv (f : \mathbb{N} \to R) \times \exists n. \forall m > n. f_{m} = 0.$$

This gives a straightforward definition of R[x] as $R[x_i | i : *]$.

But it's not immediately clear how to define the degree of a polynomial using this definition. Let's give another:

Definition

Define $R[x]^s$ to be the type of eventually vanishing sequences in R. That is

$$R[x]^{s} :\equiv (f : \mathbb{N} \to R) \times \exists n. \forall m > n. f_{m} = 0.$$

Proposition

Let A be an R-algebra. Then, evaluation at $x : R[x]^s$ gives an equivalence

$$A \simeq \mathbf{Alg}_R(R[x]^s, A).$$

- 4 週 ト - 4 三 ト - 4 三 ト

Now we can define

$${f deg}: R[x]^s o \mathbb{N}^\uparrow \ {f deg}(f)n \equiv: orall m > n. \, f_m = 0$$

3

< (T) > <

∃ → (∃ →

Now we can define

$${f deg}: R[x]^s o \mathbb{N}^\uparrow \ {f deg}(f)n \equiv: orall m > n. \, f_m = 0$$

We can prove some basic facts about the degree:

• If
$$\deg(f) = n^{\uparrow}$$
, then $f = \sum_{i=0}^{n} f_i x^i$.

•
$$\deg(f + g) \le \max\{\deg(f), \deg(g)\}.$$

• $\deg(fg) \leq \deg(f) + \deg(g)$.

3

Now we can define

$${f deg}: R[x]^s o \mathbb{N}^\uparrow \ {f deg}(f)n \equiv: orall m > n. \, f_m = 0$$

We can prove some basic facts about the degree:

• If
$$\deg(f) = n^{\uparrow}$$
, then $f = \sum_{i=0}^{n} f_i x^i$.

- $\deg(f + g) \le \max\{\deg(f), \deg(g)\}.$
- $\deg(fg) \leq \deg(f) + \deg(g)$.
- What about $\deg(f \circ g) \leq \deg(f) \cdot \deg(g)$?

Horner Normal Form

We note that any polynomial f can be written as

$$f(x) = g(x) \cdot x + f(0)$$

3

∃ ► < ∃</p>

< 4 → <

Horner Normal Form

We note that any polynomial f can be written as

$$f(x) = g(x) \cdot x + f(0)$$

Definition

Let $R[x]^h$ be the higher inductive type given by

3

通 ト イ ヨ ト イ ヨ ト

Horner Normal Form

We note that any polynomial f can be written as

$$f(x) = g(x) \cdot x + f(0)$$

Definition

Let $R[x]^h$ be the higher inductive type given by

• const :
$$R \to R[x]^h$$
,
• $(-) \cdot x + (-) : R[x]^h \times R \to R[x]^h$,
• eq : $(r : R) \to \text{const}(0) \cdot x + \text{const}(r) = \text{const}(r)$
• is $- \text{set} : R[x]^h$ is a set.

Proposition

For any *R*-algebra *A*, evaluation at $const(1) \cdot x + const(0)$ gives an equivalence

$$A\simeq \operatorname{Alg}_R(R[x]^h, A).$$

David Jaz Myers (Johns Hopkins University)

Degrees, Dimensions, and Crispness

Induction on Degree Horner Normal Form

Definition

Define the composite $f \circ g$ of two polynomials $f, g : R[x]^h$ by induction on f:

- If $f \equiv \operatorname{const}(r)$, then $f \circ g :\equiv \operatorname{const}(r)$.
- If $f \equiv h \cdot x + \text{const}(r)$, then $f \circ g :\equiv (h \circ g) \cdot g + \text{const}(r)$.
- We check that $(0 \cdot x + r) \circ g = r$, and
- We note we are mapping into a set.

Induction on Degree Horner Normal Form

Proposition

For any polynomials $f, g : R[x]^h$, $\deg(f \circ g) \leq \deg(f) \cdot \deg(g)$.

Proof.

By induction on horner normal form:

$$\begin{split} \deg((f(x)x+r)\circ g) &= \deg((f\circ g)(x)\cdot g(x)+r) \\ &= \deg((f\circ g)(x)\cdot g(x)) \\ &\leq \deg((f\circ g)) + \deg(g) \\ &\leq \deg(f)\cdot \deg(g) + \deg(g) \\ &= (\deg(f) + 1^{\uparrow})\cdot \deg(g) \\ &= \deg(f(x)\cdot x+r)\cdot \deg(g) \end{split} \qquad \text{by hypothesis}$$

Induction on Degree Horner Normal Form

Proposition

For any polynomials $f, g : R[x]^h$, $\deg(f \circ g) \leq \deg(f) \cdot \deg(g)$.

Proof.

By induction on horner normal form:

$$\begin{split} \deg((f(x)x+r)\circ g) &= \deg((f\circ g)(x)\cdot g(x)+r) \\ &= \deg((f\circ g)(x)\cdot g(x)) \\ &\leq \deg((f\circ g)) + \deg(g) \\ &\leq \deg(f)\cdot \deg(g) + \deg(g) \\ &= (\deg(f) + 1^{\uparrow})\cdot \deg(g) \\ &= \deg(f(x)\cdot x+r)\cdot \deg(g) \end{split} \qquad \text{by hypothesis}$$

Slogan: Instead of inducting on degree, induct on the polynomial!

< 🗗 🕨

3

Dimension

Definition

We define the dimension of a vector space V over a field k by

$$(\dim V)n :\equiv \min(\lambda n. ||k^n \cong V||)$$

It is the minimum n such that V has an n-element basis

3

(日) (同) (三) (三)

Dimension

Definition

We define the dimension of a vector space V over a field k by

$$(\dim V)n :\equiv \min(\lambda n. ||k^n \cong V||)$$

It is the minimum n such that V has an n-element basis

Proposition

Let f : k[x]. Then deg $(f) = \dim(k[x]/(f))$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Recall that Shulman's cohesive homotopy type theory uses **crisp** variables to keep track of discontinuous dependency. A term is crisp if all the free variables in it are crisp.

- Recall that Shulman's cohesive homotopy type theory uses **crisp** variables to keep track of discontinuous dependency. A term is crisp if all the free variables in it are crisp.
- Crisp variables must have crisp type, and only crisp terms can be substituted for crisp variables.

- Recall that Shulman's cohesive homotopy type theory uses **crisp** variables to keep track of discontinuous dependency. A term is crisp if all the free variables in it are crisp.
- Crisp variables must have crisp type, and only crisp terms can be substituted for crisp variables.
- So, x :: X a crisp point of X is a general discontinuous element of X.

- Recall that Shulman's cohesive homotopy type theory uses crisp variables to keep track of discontinuous dependency. A term is crisp if all the free variables in it are crisp.
- Crisp variables must have crisp type, and only crisp terms can be substituted for crisp variables.
- So, x :: X a crisp point of X is a general discontinuous element of X.

Axiom (LEM)

If $P :: \mathbf{Prop}$ is a crisp proposition, then either P or $\neg P$ holds.

- Recall that Shulman's cohesive homotopy type theory uses crisp variables to keep track of discontinuous dependency. A term is crisp if all the free variables in it are crisp.
- Crisp variables must have crisp type, and only crisp terms can be substituted for crisp variables.
- So, x :: X a crisp point of X is a general discontinuous element of X.

Axiom (LEM)

If P :: **Prop** is a crisp proposition, then either P or $\neg P$ holds. Discontinuously, every proposition is either true or false.

• If X is a crisp type, then $\flat X$ can be thought of as the type of crisp points of X.

Definition

The Extended Naturals \mathbb{N}^∞ is the type of monotone functions $\mathbb{N} \to \mathsf{Bool}.$

• If X is a crisp type, then $\flat X$ can be thought of as the type of crisp points of X.

Definition

The **Extended Naturals** \mathbb{N}^{∞} is the type of monotone functions $\mathbb{N} \to \text{Bool}$. Equivalently, it is the type of upwards-closed *decidable* propositions on the naturals.

Proposition

- The extended naturals embed into the upper naturals, preserving the naturals.
- The bounded extended naturals are equivalent to the naturals. Every decidable, inhabited subset of ℕ has a least element.

くほと くほと くほと

Definition

The **Extended Naturals** \mathbb{N}^{∞} is the type of monotone functions $\mathbb{N} \to \mathsf{Bool}.$

Proposition (Using LEM)

$$\flat\,\mathbb{N}^\uparrow\simeq\flat\,\mathbb{N}^\infty$$

過 ト イヨ ト イヨト

Definition

The Extended Naturals \mathbb{N}^∞ is the type of monotone functions $\mathbb{N} \to \mathsf{Bool}.$

Proposition (Using LEM)

 $\flat\,\mathbb{N}^\uparrow\simeq\flat\,\mathbb{N}^\infty$

And this equivalence restricts to

 $\flat \{ \mathsf{Bounded \ upper \ naturals} \} \simeq \mathbb{N}$

The Crisp Countable Axiom of Choice

Axiom $(AC_{\mathbb{N}})$

Suppose $P :: \mathbb{N} \to \mathbf{Type}$ is a crisp countable family of types. If $f :: (n : \mathbb{N}) \to ||Pn||$ crisply, then $||(n : \mathbb{N}) \to Pn||$.

3

過 ト イヨ ト イヨト

The Crisp Countable Axiom of Choice

Axiom $(AC_{\mathbb{N}})$

Suppose $P :: \mathbb{N} \to \mathbf{Type}$ is a crisp countable family of types. If $f :: (n : \mathbb{N}) \to ||Pn||$ crisply, then $||(n : \mathbb{N}) \to Pn||$.

Proposition

Assuming $AC_{\mathbb{N}}$, $\flat \mathbb{N}^{\infty} \simeq \mathbb{N} + \{\infty\}$.

超す イヨト イヨト ニヨ

Corollaries

Corollary

- Every crisp type is either infinite or has a natural number cardinality.
- Every crisp polynomial has natural number degree.
- Every crisp vector space has natural number dimension.

• . . .

References

- Ingo Blechschmidt. Using the internal language of toposes in algebraic geometry. *Phd Thesis*, 2017.
- Henri Lombardi and Claude Quitté. Commutative algebra: Constructive methods. Finite projective modules. arXiv e-prints, art. arXiv:1605.04832, May 2016.
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. *arXiv e-prints*, art. arXiv:1509.07584, Sep 2015.