
How do you identify one thing with another?

David Jaz Myers

Johns Hopkins University

May 14, 2019



Outline

1 What does it mean to identify one thing with another?

2 A formal definition of “identification”.

3 But first a quick introduction to type theory.

4 The Univalence axiom, which makes the type theoretic definition of
“identification” work.



Outline

1 What does it mean to identify one thing with another?

2 But first a quick introduction to type theory.

3 A formal definition of “identification”.

4 Stating the Univalence axiom, which makes the type theoretic
definition of “identification” work.



How do you identify one thing with another?

It depends what kind of things they are.

To identify a vector space V with Rn, it suffices to choose a basis
{ei}. We identify v in V with

(v1, . . . , vn) where v is v1e1 + · · ·+ vnen.

To identify the fundamental group π1(S1) of the circle with Z, it
suffices to choose a generating loop γ : S1 → S1.

To identify a number n with 3, we prove that n equals 3.



How things are identified matters

Suppose that p is a point on a manifold M.

Any chart U around p gives an identification of the tangent space
TpM with Rn (using coordinates).

But any other chart V around p also gives an identification of TpM
with Rn!

Putting them together, we get a transition matrix

Rn from U−−−−−→ TpM
from V−−−−−→ Rn.

The ambiguity in how we identify TpM with Rn

is measured by the group GLn(R).



What is Homotopy Theory?

Homotopy theory is the study of how things can be identified.the study of
the algebraic structure of identification.

In Algebraic Topology, an identification of one thing with another is a
continuous deformation of the first into the second.



What is a Type Theory?

The more complicated the math gets, the more important it is to keep
track of where things live.

For a smooth function f : Rk → Rn, we can make the Jacobian Jf
matrix of its first partials and the Hessian Hf matrix of its second
partials. But Jf represents a linear function while Hf represents a
quadratic form.

The unit circle S1 ⊆ R2 is contractible, but the unit circle
S1 ⊆ R1−{(0, 0)} is not.

As an integer, 3 is not a unit. But as a rational number, it is.

Definition

A type theory is a formal system for keeping track of “where everything
lives”.



What is a Type Theory?

The more complicated the math gets, the more important it is keep track
of what kind of thing everything is.

For a smooth function f : Rk → Rn, we can make the Jacobian Jf
matrix of its first partials and the Hessian Hf matrix of its second
partials. But Jf represents a linear function while Hf represents a
quadratic form.

The unit circle S1 ⊆ R2 is contractible, but the unit circle
S1 ⊆ R1−{(0, 0)} is not.

As an integer, 3 is not a unit. But as a rational number, it is.

Definition

A type theory is a formal system for keeping track of what kind of thing
everything is.



What is a Type Theory?

Definition

A type theory is a formal system for keeping track of what kind of thing
everything is.

a : A

means that A is the kind of thing that the thing a is.

Shorter: a is of type A.

E.g.

3 : N
π : R
N : Set

Z : Group



Judgements

a : A

is not a “proposition” – it is not up for debate.

Saying 3 : N is a judgement: the fact that 3 is a number is just part
of what we mean by 3.

3 : Z and 3 : Q are different 3s. For example, the second is a unit
while the first is not.

Similarly, we use “a ≡ b” to say that a is judged to be equal to b by
definition. For example,

3 ≡ suc(suc(suc(0))).



Dependent Types

A type can depend on a variable of another type.

For example, given k : N the type {n : N | n ≥ k} is a type which
depends on k.

The tangent space TpM of a manifold M at a point p : M is a type
which depends on p.

The codomain of a function can depend on its domain.

The function k 7→ k + 1 has type (k : N)→ {n : N | n ≥ k}.
A vector field is naturally a dependent function. A vector field assigns
to each point p : M of a manifold a vector vp : TpM of its tangent
space. This has type v : (p : M)→ TpM.



Functions

Every thing is a certain kind of thing.

In a type theory, every free variable must be annotated with its type.

Given types A and B depending on A,

(a : A)→ B(a) or, sometimes, Πa:AB(a)

is the type of functions from A to B. (We write A→ B if B
doesn’t depend on A.)
To define a function f : (a : A)→ B(a), assume a free a : A, and write
down an element f(a) : B(a); then f is the function a 7→ f(a).
E.g., if M : Manifold and p : M, then we can define the tangent
space TpM : VectorSpace. So p 7→ TpM : M→ VectorSpace.
Since for any p : M, we have that 0 : TpM, we get a function
p 7→ 0 : (p : M)→ TpM – the zero vector field.



Inductive Types: Natural Numbers

If a type A is an inductive type, we may assume that a free variable a : A
is of one several prescribed forms.

We may assume a free natural number n : N is either of the form
1 n ≡ 0, or
2 n ≡ suc(m) with m : N.

To define + : N→ (N→ N), we assume a free variable n : N and
seek a function of type N→ N.

1 If n ≡ 0, then we have id ≡ x 7→ x : N→ N, or
2 If n ≡ suc(m), then we have x 7→ suc(x + m) : N→ N

In total, we have

n 7→

{
x 7→ x if n ≡ 0

x 7→ suc(x + m) if n ≡ suc(m).
: N→ (N→ N)



The Type of Identifications

Given any two terms a, b : A, we have a type a =A b of identifications
of a with b.

We may assume that free variables b : A and p : a =A b are of the
form

1 refl : a =A a.

To define sym : (a, b : A)→ a =A b→ b =A a, assume that a, b : A
and p : a =A b are free variables.

1 If b ≡ a and p ≡ refl, then refl : b =A a.

So,

a, b, p 7→
{

refl if p ≡ refl : (a, b : A)→ a =A b→ b =A a.



Hmmm...

Question

Given that elements p : a =A b have only one prescribed form, is there at
most one element of type a =A b (namely, refl when a ≡ b)?



Pairs and Equivalences

Given a type A and a type B depending on A, we can form the type

(a : A)× B(a) or sometimes Σa:AB(a)

whose elements are pairs (a, b) : (a : A)× B(a) where a : A and b : B(a).

Definition

A function e : A→ B is an equivalence if there are functions `, r : B→ A
and identifications p : idA =A→A ` ◦ e and q : e ◦ r =B→B idB. In other
words

e is an equivalence :≡

(` : B→ A)× (r : B→ A)× (idA =A→A ` ◦ e)× (e ◦ r =B→B idB)

and
A ' B :≡ (e : A→ B)× e is an equivalence



Univalence

Every identification p of a type A with a type B gives an equivalence
id-to-equiv(p) : A ' B.

How do we define the function
id-to-equiv : (A, B : Type)→ A =Type B→ A ' B?

Assume that A and B are free variables of type Type, and that
p : A =Type B.

1 Since B and p are free, we may assume B ≡ A and p ≡ refl. Then
id : A ' B is an equivalence.

So,

id-to-equiv :≡ A, B, p, 7→
{

id if p ≡ refl



Univalence

The Univalence Axiom says that id-to-equiv : A =Type B→ A ' B is an
equivalence. In other words,

ua : id-to-equiv is an equivalence

We may identify the type A with the type B by giving an equivalence
e : A ' B.

Univalence implies that the formal definition of “identification” gives
what we expect:

If V : VectorSpace, then V =VectorSpace Rn is the type of bases of V
with n elements.

If G : Group, then G =Group Z is the type of isomorphisms of G with
Z.

If n : N, then n =N 3 has at most one element. To write down an
element e : n =N 3 is the same as proving that n equals 3.


