How do you identify one thing with another?

David Jaz Myers

Johns Hopkins University

May 14, 2019

Outline

- What does it mean to identify one thing with another?
- A formal definition of "identification".

Outline

- What does it mean to identify one thing with another?
- Ø But first a quick introduction to type theory.
- A formal definition of "identification".
- Stating the Univalence axiom, which makes the type theoretic definition of "identification" work.

How do you identify one thing with another?

It depends what kind of things they are.

• To identify a **vector space** V with \mathbb{R}^n , it suffices to choose a basis $\{e_i\}$. We identify v in V with

 (v^1, \ldots, v^n) where v is $v^1e_1 + \cdots + v^ne_n$.

- To identify the fundamental group π₁(S¹) of the circle with Z, it suffices to choose a generating loop γ : S¹ → S¹.
- To identify a **number** n with 3, we prove that n equals 3.

How things are identified matters

- Suppose that p is a point on a manifold M.
- Any chart U around p gives an identification of the tangent space T_pM with \mathbb{R}^n (using coordinates).
- But any other chart V around p also gives an identification of T_pM with \mathbb{R}^n !
- Putting them together, we get a transition matrix

$$\mathbb{R}^{n} \xrightarrow{\text{from } U} T_{p}M \xrightarrow{\text{from } V} \mathbb{R}^{n}.$$

The ambiguity in how we identify T_pM with \mathbb{R}^n is measured by the **group** $GL_n(\mathbb{R})$.

What is Homotopy Theory?

Homotopy theory is the study of how things can be identified.the study of the algebraic structure of identification.

• In Algebraic Topology, an identification of one thing with another is a **continuous deformation** of the first into the second.

What is a Type Theory?

The more complicated the math gets, the more important it is **to keep track of where things live**.

- For a smooth function f : ℝ^k → ℝⁿ, we can make the Jacobian Jf matrix of its first partials and the Hessian Hf matrix of its second partials. But Jf represents a linear function while Hf represents a quadratic form.
- The unit circle $S^1 \subseteq \mathbb{R}^2$ is contractible, but the unit circle $S^1 \subseteq \mathbb{R}^1 \{(0, 0)\}$ is not.
- As an integer, 3 is not a unit. But as a rational number, it is.

Definition

A **type theory** is a formal system for keeping track of "where everything lives".

What is a Type Theory?

The more complicated the math gets, the more important it is keep track of what kind of thing everything is.

- For a smooth function f : ℝ^k → ℝⁿ, we can make the Jacobian Jf matrix of its first partials and the Hessian Hf matrix of its second partials. But Jf represents a linear function while Hf represents a quadratic form.
- The unit circle $S^1 \subseteq \mathbb{R}^2$ is contractible, but the unit circle $S^1 \subseteq \mathbb{R}^1 \{(0, 0)\}$ is not.
- As an integer, 3 is not a unit. But as a rational number, it is.

Definition

A **type theory** is a formal system for keeping track of what kind of thing everything is.

What is a Type Theory?

Definition

A **type theory** is a formal system for keeping track of what kind of thing everything is.

۲

a:A

means that A is the kind of thing that the thing a is.

• Shorter: a *is of type* A.

• E.g.

 $3 : \mathbb{N}$ $\pi : \mathbb{R}$ $\mathbb{N} : Set$ $\mathbb{Z} : Group$

Judgements

a : A

is not a "proposition" - it is not up for debate.

- Saying 3 : N is a **judgement**: the fact that 3 is a *number* is just part of what we mean by 3.
- 3 : ℤ and 3 : ℚ are *different* 3s. For example, the second is a unit while the first is not.
- Similarly, we use "a ≡ b" to say that a is *judged* to be equal to b by *definition*. For example,

 $3 \equiv \operatorname{suc}(\operatorname{suc}(\operatorname{suc}(0))).$

Dependent Types

A type can depend on a variable of another type.

- For example, given k : N the type {n : N | n ≥ k} is a type which depends on k.
- The tangent space T_pM of a manifold M at a point p : M is a type which depends on p.

The codomain of a function can depend on its domain.

- The function $k \mapsto k + 1$ has type $(k : \mathbb{N}) \to \{n : \mathbb{N} \mid n \ge k\}$.
- A vector field is naturally a dependent function. A vector field assigns to each point p : M of a manifold a vector $v_p : T_pM$ of its tangent space. This has type $v : (p : M) \to T_pM$.

Functions

Every thing is a certain kind of thing.

• In a type theory, every free variable must be annotated with its type.

 $\bullet\,$ Given types A and B depending on A,

 $(a:A) \rightarrow B(a)$ or, sometimes, $\Pi_{a:A}B(a)$

Inductive Types: Natural Numbers

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

- We may assume a free natural number n : N is either of the form
 1 n ≡ 0, or
 2 n ≡ suc(m) with m : N.
- To define + : N → (N → N), we assume a free variable n : N and seek a function of type N → N.

If $n \equiv 0$, then we have $id \equiv x \mapsto x : \mathbb{N} \to \mathbb{N}$, or

2 If $n \equiv suc(m)$, then we have $x \mapsto suc(x+m) : \mathbb{N} \to \mathbb{N}$

In total, we have

$$n \mapsto \begin{cases} x \mapsto x & \text{if } n \equiv 0 \\ x \mapsto \operatorname{suc}(x+m) & \text{if } n \equiv \operatorname{suc}(m). \end{cases} \colon \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$

The Type of Identifications

Given any two terms a, b : A, we have a **type** $a =_A b$ of identifications of a with b.

• We may assume that free variables b:A and $p:a=_A b$ are of the form

• refl : $a =_A a$.

To define sym : (a, b : A) → a =_A b → b =_A a, assume that a, b : A and p : a =_A b are free variables.
If b ≡ a and p ≡ refl, then refl : b =_A a. So,

 $\mathsf{a},\,\mathsf{b},\,\mathsf{p}\mapsto \Big\{\mathsf{refl}\quad \mathsf{if}\,\, p\equiv\mathsf{refl}\,:(\mathsf{a},\,\mathsf{b}:\mathsf{A})\to\mathsf{a}=_\mathsf{A}\mathsf{b}\to\mathsf{b}=_\mathsf{A}\mathsf{a}.$

Hmmm...

Question

Given that elements $p : a =_A b$ have only one prescribed form, is there at most one element of type $a =_A b$ (namely, refl when $a \equiv b$)?

Pairs and Equivalences

Given a type A and a type B depending on A, we can form the type

 $(a:A) \times B(a)$ or sometimes $\Sigma_{a:A}B(a)$

whose elements are pairs (a, b): $(a : A) \times B(a)$ where a : A and b : B(a).

Definition

A function $e : A \to B$ is an *equivalence* if there are functions ℓ , $r : B \to A$ and identifications $p : id_A =_{A \to A} \ell \circ e$ and $q : e \circ r =_{B \to B} id_B$. In other words

e is an equivalence $:\equiv$

 $(\ell: B \to A) \times (r: B \to A) \times (\mathsf{id}_A =_{A \to A} \ell \circ e) \times (e \circ r =_{B \to B} \mathsf{id}_B)$

and

 $\mathsf{A}\simeq\mathsf{B}:\equiv(\mathsf{e}:\mathsf{A}\to\mathsf{B})\times\mathsf{e}\text{ is an equivalence}$

Univalence

Every identification p of a type A with a type B gives an equivalence $id-to-equiv(p) : A \simeq B$.

- How do we define the function id-to-equiv : $(A, B : Type) \rightarrow A =_{Type} B \rightarrow A \simeq B?$
- Assume that A and B are free variables of type Type, and that $p : A =_{Type} B$.
 - Since B and p are free, we may assume B ≡ A and p ≡ refl. Then id : A ≃ B is an equivalence.

So,

$$\mathsf{id}\mathsf{-to}\mathsf{-equiv}:\equiv\mathsf{A},\,\mathsf{B},\,\mathsf{p},\,\mapsto\Big\{\mathsf{id}\quad\mathsf{if}\,\,\mathit{p}\equiv\mathsf{refl}$$

Univalence

The Univalence Axiom says that id-to-equiv : $A =_{Type} B \rightarrow A \simeq B$ is an equivalence. In other words,

ua : id-to-equiv is an equivalence

We may identify the type A with the type B by giving an equivalence $e : A \simeq B$.

Univalence implies that the formal definition of "identification" gives what we expect:

- If V : VectorSpace, then V =_{VectorSpace} ℝⁿ is the type of bases of V with n elements.
- If G : Group, then $G =_{Group} \mathbb{Z}$ is the type of isomorphisms of G with \mathbb{Z} .
- If n : N, then n =_N 3 has at most one element. To write down an element e : n =_N 3 is the same as *proving* that n equals 3.