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Part 1. Homotopy Type Theory
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How do you identify one thing with another?

It depends what kind of things they are.

e To identify the affine plane with R?, we need to choose a point to
serve as the origin.

e To identify the tangent space of S? at the point (%, %, %) with

R?, we need to give a basis {91, 2} of it. Then we can identify any
tangent vector

sl
v=v'd +v29, with [V2:|

e To identify H"(S"; Z) with Z, we must choose an orientation for the
n-sphere S".

e To identify the natural number n such that 74(S?) is isomorphic to
Z,, with the number 2, we need to prove that n equals 2.



Type Theory

A type is a type of mathematical thing.

Type theory gives rules for making new types and new terms of them.
It is a full foundation of mathematics, from scratch.

a term : its type
a:A
3:N
N : Set
T,M : Vecty
Vecty : Type
K(Z; 2) : Type
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Identifications

For a and b : A,
a=pb: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectp, then V = W is the type of R-linear
isomorphisms between V and W.

@ For X and Y : Set, then X =Y is the type of bijections of between
them.

@ For M and N : Mfd,., then M = N is the type of smooth
diffeomorphisms between them.

@ For n and m : N, then n = m has an element if and only if n equals m
— there is at most one way to identify two natural numbers.

Axiom (Univalence)
If X and Y are types, then X =Y is the type of equivalences of X with Y. J
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Given A : Type and a type B(a) depending on a term a : A,
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is the type of functions sending a to an element of B(a).

@ A vector fieldisv: (p: M) — T,M.
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Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then
(a:A) xB(a)

is the type of pairs (a,b) with a: A and b : B(a).

@ The type (p: M) x T,M is the tangent bundle.

e Note that (p: M) — T,M is the type of sections to
(p,v)—=p:(p:M)xT,M—= M

Definition
For a function f : A — B and b : B, its fiber is the type

fib¢(b) := (a: A) x (f(a) = b)

together with the map (a, p) — a : fibg(b) — A.




Contractible Types and the Substitution Lemma

Definition
A center of contraction for a type A is an element c : A such that for every
other element a : A, we have an identification of a with c.

Contr(A) := (c: A) x ((a: A) = (a=¢))

Definition
A map f : A — B is an equivalence if its fibers are contractible:

Equiv(f) := (y : Y) — Contr(fib¢(y))




Contractible Types and the Substitution Lemma

Lemma (Singleton Lemma, UFP)
For any type A and element c : A, the singleton type (“based path type”)

is contractible.

Lemma (Substitution Lemma, UFP)

Suppose B : A — Type and c : Contr(A) is a center of contraction for A.

Then
(a:A) xB(a) =B(c).
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The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c: A and suppose that B : A — Type. Then

f|bfst(XO)
-
fibs T(YO) = Y

(x,p) : fibe(yo)) x (x = xo)
x: X) x (p:f(x) =yo) x (x
) = vo

Xo)




The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

= ((x, p) : fib(yo)) > (x = xo0)

(< X) % (p = f(x) = yo) x (x = xo)
fibfst(xo0) = f(x0) = yo . ’
2 = Qv
fibe(yo) et X ; Y
T




The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

fibe(yo) X Y

fst f
(x : X) x f(x) =yo
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Definition

@ A proposition is a type P such that for any a, b: P, a= b is
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@ A setis a type S such that for any a, b: S, a = b is a proposition.
@ A groupoid is a type G such that for any a, b: G, a = b is a set.




Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction ¢, d : Contr(A), c = d is contractible.

Definition
@ A proposition is a type P such that for any a, b: P, a= b is
contractible.
@ A setis a type S such that for any a, b: S, a = b is a proposition.
@ A groupoid is a type G such that for any a, b: G, a = b is a set.

@ An n-type is a type X such that for any a, b : X, a=b is an
(n — 1)-type (with —2-types being contractible).
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Truncation

Theorem (UFP)

For any type X, there is a proposition ||X|| and a map |- | : X — [|X|| and
such that
X % P
4
X

for any proposition P.

e |(a:A) x B(a)|l represents the proposition Ja : A. B(a).

@ If c: A, then (a: A) x ||]a =] is all elements of A which are
identifiable with c.
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Higher Groups

A group is the collection of symmetries of an object.

@ The symmetric group Aut(n) is the type of symmetries of an
n-element set:

@ The general linear group GL,(R) is the type of linear symmetries of
R":
GLn(R) =R" —Vectp R"

@ The dihedral group Do, is the type of symmetries of an n-gon in the
plane.
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e Let BAut(n) := (X : Set) x [[X ={1,...,n}| be the type of
n-element sets, pointed at {1,...,n}. Then

Aut(n) = QBAut(n)

o Let BGL,(R) := (V : Vectr) x ||V = R"|| be the type of
n-dimensional vector spaces, pointed at R". Then

GL,(R) = QBGL,(R)

Definition
For a : A, define
BAuta(a) :=(b: A) x ||b = a|

be the type of things identifiable with a, pointed at a. Then

Auta(a) = a =p a = QBAuta(a)




oo-Groups

Definition
An oco-group is a type G identified with the loops of a pointed, connected
type BG (the delooping of G).
coGroup := (G : Type) x (BG : Type°) x G = QBG
= Type;°.

Definition
An abstract group is a set G equipped with associative, unital, and
invertible binary operation.




Groups are oo-Groups

Definition
For any abstract group G, the type

BG := {G-torsors}
is connected, and pointed at G has

QBG =G.
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Definition
A homomorphism of co-groups is a pointed map between their deloopings:

BG -— BH := (f : BG — BH) x (f(ptgg) = ptgn)

e Consider f = X — X+ 1: BAut(n) - — BAut(n + 1),
» pointed by e: {1,....n} +{n+1} ={1,...,n+1}.
» Then Qf :=p— e f.(p) e: Aut(n) — Aut(n + 1) is the inclusion.

@ Consider f =V — A"V : BGLH(R) -— BGLl(R),
» pointed by e; A Aep— 1:A"R" =R,
» Then Qf = det takes the determinant.
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Schreier Theory: Classifying Extensions

Theorem (Schreier Theory for co-groups)

Let F and G be co-groups, then

{Extensions of G by F} = BG - — BAut(BF)

Corollary
For any group G,

{Extensions of Z by G}~ = Out(G)
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