Higher Groups in Homotopy Type Theory

David Jaz Myers

September 24, 2019

Part 1. Homotopy Type Theory

How do you identify one thing with another?

It depends what kind of things they are.

How do you identify one thing with another?

It depends what kind of things they are.

e To identify the affine plane with R?, we need to choose a point to
serve as the origin.

How do you identify one thing with another?

It depends what kind of things they are.

e To identify the affine plane with R?, we need to choose a point to
serve as the origin.

e To identify the tangent space of S? at the point (%, %, %) with
R?, we need to give a basis {91, 2} of it. Then we can identify any
tangent vector

sl
v=v'd +v29, with [V2:|

How do you identify one thing with another?

It depends what kind of things they are.

e To identify the affine plane with R?, we need to choose a point to
serve as the origin.

e To identify the tangent space of S? at the point (%, %, %) with
R?, we need to give a basis {91, 2} of it. Then we can identify any
tangent vector

sl
v=v'd +v29, with [V2:|

e To identify H"(S"; Z) with Z, we must choose an orientation for the
n-sphere S".

How do you identify one thing with another?

It depends what kind of things they are.

e To identify the affine plane with R?, we need to choose a point to
serve as the origin.

e To identify the tangent space of S? at the point (%, %, %) with

R?, we need to give a basis {91, 2} of it. Then we can identify any
tangent vector

sl
v=v'd +v29, with [V2:|

e To identify H"(S"; Z) with Z, we must choose an orientation for the
n-sphere S".

e To identify the natural number n such that 74(S?) is isomorphic to
Z,, with the number 2, we need to prove that n equals 2.

Type Theory

A type is a type of mathematical thing.

Type theory gives rules for making new types and new terms of them.
It is a full foundation of mathematics, from scratch.

a term : its type
a:A
3:N
N : Set
T,M : Vecty
Vecty : Type
K(Z; 2) : Type

Identifications

For a and b : A,
a=a b: Type

is the type of identifications of a with b as elements of A

Identifications

For a and b : A,
a=a b: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectg, then V = W is the type of R-linear
isomorphisms between V and W.

Identifications

For a and b : A,
a=a b: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectg, then V = W is the type of R-linear
isomorphisms between V and W.

@ For X and Y : Set, then X =Y is the type of bijections of between
them.

Identifications

For a and b : A,
a=pb: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectp, then V = W is the type of R-linear
isomorphisms between V and W.

@ For X and Y : Set, then X =Y is the type of bijections of between
them.

@ For M and N : Mfd,., then M = N is the type of smooth
diffeomorphisms between them.

Identifications

For a and b : A,
a=pb: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectp, then V = W is the type of R-linear
isomorphisms between V and W.

@ For X and Y : Set, then X =Y is the type of bijections of between
them.

@ For M and N : Mfd,., then M = N is the type of smooth
diffeomorphisms between them.

@ For n and m : N, then n = m has an element if and only if n equals m
— there is at most one way to identify two natural numbers.

Identifications

For a and b : A,
a=pb: Type

is the type of identifications of a with b as elements of A

@ For V and W : Vectp, then V = W is the type of R-linear
isomorphisms between V and W.

@ For X and Y : Set, then X =Y is the type of bijections of between
them.

@ For M and N : Mfd,., then M = N is the type of smooth
diffeomorphisms between them.

@ For n and m : N, then n = m has an element if and only if n equals m
— there is at most one way to identify two natural numbers.

Axiom (Univalence)
If X and Y are types, then X =Y is the type of equivalences of X with Y. J

Dependent Types and Functions

Types can depend on elements of others types.

@ If p: M is a point on a manifold, then T,M is a vector space that
depends on p

Dependent Types and Functions

Types can depend on elements of others types.

@ If p: M is a point on a manifold, then T,M is a vector space that
depends on p

Given A : Type and a type B(a) depending on a term a : A,
(a: A) — B(a)

is the type of functions sending a to an element of B(a).

Dependent Types and Functions

Types can depend on elements of others types.

@ If p: M is a point on a manifold, then T,M is a vector space that
depends on p

Given A : Type and a type B(a) depending on a term a : A,
(a: A) — B(a)

is the type of functions sending a to an element of B(a).

@ A vector fieldisv: (p: M) — T,M.

Dependent Types and Pairs
Given A : Type with B(a) depending on a : A, then
(a:A)xB(a)

is the type of pairs (a,b) with a: A and b : B(a).

Dependent Types and Pairs
Given A : Type with B(a) depending on a : A, then
(a:A)xB(a)

is the type of pairs (a,b) with a: A and b : B(a).

@ The type (p: M) x T,M is the tangent bundle.

Dependent Types and Pairs
Given A : Type with B(a) depending on a : A, then
(a:A) xB(a)

is the type of pairs (a,b) with a: A and b : B(a).

@ The type (p: M) x T,M is the tangent bundle.

e Note that (p: M) — T,M is the type of sections to
(p,v)—=p:(p:M)xT,M—= M

Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then
(a:A) xB(a)

is the type of pairs (a,b) with a: A and b : B(a).

@ The type (p: M) x T,M is the tangent bundle.

e Note that (p: M) — T,M is the type of sections to
(p,v)—=p:(p:M)xT,M—= M

Definition
For a function f : A — B and b : B, its fiber is the type

fib¢(b) := (a: A) x (f(a) = b)

together with the map (a, p) — a : fibg(b) — A.

Contractible Types and the Substitution Lemma

Definition
A center of contraction for a type A is an element c : A such that for every
other element a : A, we have an identification of a with c.

Contr(A) := (c: A) x ((a: A) = (a=¢))

Definition
A map f : A — B is an equivalence if its fibers are contractible:

Equiv(f) := (y : Y) — Contr(fib¢(y))

Contractible Types and the Substitution Lemma

Lemma (Singleton Lemma, UFP)
For any type A and element c : A, the singleton type (“based path type”)

is contractible.

Lemma (Substitution Lemma, UFP)

Suppose B : A — Type and c : Contr(A) is a center of contraction for A.

Then
(a:A) xB(a) =B(c).

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

fib¢(yo) e X Y

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

ﬁbfst(XO)
-
fibe(yo) X Y

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

= ((x,p) : fibe(yo)) X (x = x0)

ﬁbfst(XO)
-
fibe(yo) X Y

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c: A and suppose that B : A — Type. Then

f|bfst(XO)
-
fibs T(YO) = Y

(x,p) : fibe(yo)) x (x = xo)
x: X) x (p:f(x) =yo) x (x
) = vo

Xo)

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

= ((x, p) : fib(yo)) > (x = xo0)

(< X) % (p = f(x) = yo) x (x = xo)
fibfst(xo0) = f(x0) = yo . ’
2 = Qv
fibe(yo) et X ; Y
T

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)
Let c: A and suppose that B : A — Type. Then

fibe(yo) X Y

fst f
(x : X) x f(x) =yo

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction ¢, d : Contr(A), c = d is contractible.

o

Definition

@ A proposition is a type P such that for any a, b: P, a= b is
contractible.

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction ¢, d : Contr(A), c = d is contractible.

v

Definition

@ A proposition is a type P such that for any a, b: P, a= b is
contractible.

@ A setis a type S such that for any a, b: S, a = b is a proposition.

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction ¢, d : Contr(A), c = d is contractible.

Definition

@ A proposition is a type P such that for any a, b: P, a= b is
contractible.

@ A setis a type S such that for any a, b: S, a = b is a proposition.
@ A groupoid is a type G such that for any a, b: G, a = b is a set.

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction ¢, d : Contr(A), c = d is contractible.

Definition
@ A proposition is a type P such that for any a, b: P, a= b is
contractible.
@ A setis a type S such that for any a, b: S, a = b is a proposition.
@ A groupoid is a type G such that for any a, b: G, a = b is a set.

@ An n-type is a type X such that for any a, b : X, a=b is an
(n — 1)-type (with —2-types being contractible).

Truncation

Theorem (UFP)

For any type X, there is a proposition ||X|| and a map |- | : X — [|X|| and
such that
X — - p
A
4
X

for any proposition P.

Truncation

Theorem (UFP)

For any type X, there is a proposition ||X|| and a map |- | : X — [|X|| and
such that
X % P
4
X

for any proposition P.

e |(a:A) x B(a)|l represents the proposition Ja : A. B(a).

Truncation

Theorem (UFP)

For any type X, there is a proposition ||X|| and a map |- | : X — [|X|| and
such that
X % P
4
X

for any proposition P.

e |(a:A) x B(a)|l represents the proposition Ja : A. B(a).

@ If c: A, then (a: A) x ||]a =] is all elements of A which are
identifiable with c.

Part 2: Higher Groups

Higher Groups

A group is the collection of symmetries of an object.

Higher Groups

A group is the collection of symmetries of an object.

@ The symmetric group Aut(n) is the type of symmetries of an
n-element set:

Aut(n) ={1,...,n} =set {1,...,n}

Higher Groups

A group is the collection of symmetries of an object.

@ The symmetric group Aut(n) is the type of symmetries of an
n-element set:

@ The general linear group GL,(R) is the type of linear symmetries of
R":
GLn(R) =R" —Vectp R"

Higher Groups

A group is the collection of symmetries of an object.

@ The symmetric group Aut(n) is the type of symmetries of an
n-element set:

@ The general linear group GL,(R) is the type of linear symmetries of
R":
GLn(R) =R" —Vectp R"

@ The dihedral group Do, is the type of symmetries of an n-gon in the
plane.

e Let BAut(n) := (X : Set) x [[X ={1,...,n}| be the type of
n-element sets, pointed at {1,...,n}. Then

Aut(n) = QBAut(n)

e Let BAut(n) := (X : Set) x [[X ={1,...,n}| be the type of
n-element sets, pointed at {1,...,n}. Then

Aut(n) = QBAut(n)

o Let BGL,(R) := (V : Vectr) x ||V = R"|| be the type of
n-dimensional vector spaces, pointed at R". Then

GL,(R) = QBGL,(R)

e Let BAut(n) := (X : Set) x [[X ={1,...,n}| be the type of
n-element sets, pointed at {1,...,n}. Then

Aut(n) = QBAut(n)

o Let BGL,(R) := (V : Vectr) x ||V = R"|| be the type of
n-dimensional vector spaces, pointed at R". Then

GL,(R) = QBGL,(R)

Definition
For a : A, define
BAuta(a) :=(b: A) x ||b = a|

be the type of things identifiable with a, pointed at a. Then

Auta(a) = a =p a = QBAuta(a)

oo-Groups

Definition
An oco-group is a type G identified with the loops of a pointed, connected
type BG (the delooping of G).
coGroup := (G : Type) x (BG : Type°) x G = QBG
= Type;°.

Definition
An abstract group is a set G equipped with associative, unital, and
invertible binary operation.

Groups are oo-Groups

Definition
For any abstract group G, the type

BG := {G-torsors}
is connected, and pointed at G has

QBG =G.

Definition
A homomorphism of co-groups is a pointed map between their deloopings:

BG -— BH := (f : BG — BH) x (f(ptgg) = ptgn)

e Consider f = X — X+ 1: BAut(n) - — BAut(n + 1),
» pointed by e: {1,....n} +{n+1} ={1,...,n+1}.

Definition
A homomorphism of co-groups is a pointed map between their deloopings:

BG -— BH := (f : BG — BH) x (f(ptgg) = ptgn)

e Consider f = X — X+ 1: BAut(n) - — BAut(n + 1),
» pointed by e: {1,....n} +{n+1} ={1,...,n+1}.
» Then Qf :=p— e f.(p) e: Aut(n) — Aut(n + 1) is the inclusion.

Definition
A homomorphism of co-groups is a pointed map between their deloopings:

BG -— BH := (f : BG — BH) x (f(ptgg) = ptgn)

e Consider f = X — X+ 1: BAut(n) - — BAut(n + 1),
» pointed by e: {1,....n} +{n+1} ={1,...,n+1}.
» Then Qf :=p— e f.(p) e: Aut(n) — Aut(n + 1) is the inclusion.

e Consider f =V — A"V : BGL,(R) -— BGL;(R),
» pointed by e; A Aep— 1:A"R" =R,

Definition
A homomorphism of co-groups is a pointed map between their deloopings:

BG -— BH := (f : BG — BH) x (f(ptgg) = ptgn)

e Consider f = X — X+ 1: BAut(n) - — BAut(n + 1),
» pointed by e: {1,....n} +{n+1} ={1,...,n+1}.
» Then Qf :=p— e f.(p) e: Aut(n) — Aut(n + 1) is the inclusion.

@ Consider f =V — A"V : BGLH(R) -— BGLl(R),
» pointed by e; A Aep— 1:A"R" =R,
» Then Qf = det takes the determinant.

Schreier Theory: Classifying Extensions

Lemma

For groups F and G the type of extensions F — E — G of G by F is
equivalent to the type of fiber sequences BF -— BE - — BG.

Schreier Theory: Classifying Extensions

Lemma
For groups F and G the type of extensions F — E — G of G by F is
equivalent to the type of fiber sequences BF -— BE - — BG.

Theorem (Schreier Theory for co-groups)
Let F and G be co-groups, then

{Extensions of G by F} = BG - — BAut(BF)

Schreier Theory: Classifying Extensions

Theorem (Schreier Theory for co-groups)

Let F and G be co-groups, then

{Extensions of G by F} = BG - — BAut(BF)

Corollary
For any group G,

{Extensions of Z by G}~ = Out(G)

References

o “Homotopy Type Theory”, The Univalent Foundations Project, 2013.

@ “Lectures on n-Categories and Cohomology”, Baez and Shulman,
2007.

@ “Higher Groups in Homotopy Type Theory”, Buchholtz, van Dorn,
and Rijke, 2018.

