
Higher Groups in Homotopy Type Theory

David Jaz Myers

September 24, 2019

Part 1: Homotopy Type Theory

How do you identify one thing with another?

It depends what kind of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point (1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.

How do you identify one thing with another?

It depends what kind of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point (1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.

How do you identify one thing with another?

It depends what kind of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point (1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.

How do you identify one thing with another?

It depends what kind of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point (1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.

How do you identify one thing with another?

It depends what kind of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point (1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.

Type Theory

A type is a type of mathematical thing.

Type theory gives rules for making new types and new terms of them.
It is a full foundation of mathematics, from scratch.

a term : its type

a : A

3 : N
N : Set

TpM : VectR

VectR : Type

K(Z; 2) : Type

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Dependent Types and Functions

Types can depend on elements of others types.

If p : M is a point on a manifold, then TpM is a vector space that
depends on p

Given A : Type and a type B(a) depending on a term a : A,

(a : A)→ B(a)

is the type of functions sending a to an element of B(a).

A vector field is v : (p : M)→ TpM.

Dependent Types and Functions

Types can depend on elements of others types.

If p : M is a point on a manifold, then TpM is a vector space that
depends on p

Given A : Type and a type B(a) depending on a term a : A,

(a : A)→ B(a)

is the type of functions sending a to an element of B(a).

A vector field is v : (p : M)→ TpM.

Dependent Types and Functions

Types can depend on elements of others types.

If p : M is a point on a manifold, then TpM is a vector space that
depends on p

Given A : Type and a type B(a) depending on a term a : A,

(a : A)→ B(a)

is the type of functions sending a to an element of B(a).

A vector field is v : (p : M)→ TpM.

Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then

(a : A)× B(a)

is the type of pairs (a, b) with a : A and b : B(a).

The type (p : M)× TpM is the tangent bundle.

Note that (p : M)→ TpM is the type of sections to
(p, v) 7→ p : (p : M)× TpM→ M

Definition

For a function f : A→ B and b : B, its fiber is the type

fibf(b) :≡ (a : A)× (f(a) = b)

together with the map (a, p) 7→ a : fibf(b)→ A.

Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then

(a : A)× B(a)

is the type of pairs (a, b) with a : A and b : B(a).

The type (p : M)× TpM is the tangent bundle.

Note that (p : M)→ TpM is the type of sections to
(p, v) 7→ p : (p : M)× TpM→ M

Definition

For a function f : A→ B and b : B, its fiber is the type

fibf(b) :≡ (a : A)× (f(a) = b)

together with the map (a, p) 7→ a : fibf(b)→ A.

Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then

(a : A)× B(a)

is the type of pairs (a, b) with a : A and b : B(a).

The type (p : M)× TpM is the tangent bundle.

Note that (p : M)→ TpM is the type of sections to
(p, v) 7→ p : (p : M)× TpM→ M

Definition

For a function f : A→ B and b : B, its fiber is the type

fibf(b) :≡ (a : A)× (f(a) = b)

together with the map (a, p) 7→ a : fibf(b)→ A.

Dependent Types and Pairs

Given A : Type with B(a) depending on a : A, then

(a : A)× B(a)

is the type of pairs (a, b) with a : A and b : B(a).

The type (p : M)× TpM is the tangent bundle.

Note that (p : M)→ TpM is the type of sections to
(p, v) 7→ p : (p : M)× TpM→ M

Definition

For a function f : A→ B and b : B, its fiber is the type

fibf(b) :≡ (a : A)× (f(a) = b)

together with the map (a, p) 7→ a : fibf(b)→ A.

Contractible Types and the Substitution Lemma

Definition

A center of contraction for a type A is an element c : A such that for every
other element a : A, we have an identification of a with c.

Contr(A) :≡ (c : A)×
(
(a : A)→ (a = c)

)
Definition

A map f : A→ B is an equivalence if its fibers are contractible:

Equiv(f) :≡ (y : Y)→ Contr(fibf(y))

Contractible Types and the Substitution Lemma

Lemma (Singleton Lemma, UFP)

For any type A and element c : A, the singleton type (“based path type”)

(a : A)× (a = c)

is contractible.

Lemma (Substitution Lemma, UFP)

Suppose B : A→ Type and c : Contr(A) is a center of contraction for A.
Then

(a : A)× B(a) = B(c).

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

The Long Fiber Sequence from a Map

Corollary (Substitution Lemma)

Let c : A and suppose that B : A→ Type. Then

(a : A)× (a = c)× B(a) = B(c).

YXfibf(y0)
fst f

(x : X)× f(x) = y0

fibfst(x0)

ΩY

≡ ((x, p) : fibf(y0)) × (x = x0)

= (x : X) × (p : f(x) = y0) × (x = x0)

= f(x0) = y0

= ΩY

ΩX· · ·

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction c, d : Contr(A), c = d is contractible.

Definition

A proposition is a type P such that for any a, b : P, a = b is
contractible.

A set is a type S such that for any a, b : S, a = b is a proposition.

A groupoid is a type G such that for any a, b : G, a = b is a set.

. . .

An n-type is a type X such that for any a, b : X, a = b is an
(n− 1)-type (with −2-types being contractible).

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction c, d : Contr(A), c = d is contractible.

Definition

A proposition is a type P such that for any a, b : P, a = b is
contractible.

A set is a type S such that for any a, b : S, a = b is a proposition.

A groupoid is a type G such that for any a, b : G, a = b is a set.

. . .

An n-type is a type X such that for any a, b : X, a = b is an
(n− 1)-type (with −2-types being contractible).

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction c, d : Contr(A), c = d is contractible.

Definition

A proposition is a type P such that for any a, b : P, a = b is
contractible.

A set is a type S such that for any a, b : S, a = b is a proposition.

A groupoid is a type G such that for any a, b : G, a = b is a set.

. . .

An n-type is a type X such that for any a, b : X, a = b is an
(n− 1)-type (with −2-types being contractible).

Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction c, d : Contr(A), c = d is contractible.

Definition

A proposition is a type P such that for any a, b : P, a = b is
contractible.

A set is a type S such that for any a, b : S, a = b is a proposition.

A groupoid is a type G such that for any a, b : G, a = b is a set.

. . .

An n-type is a type X such that for any a, b : X, a = b is an
(n− 1)-type (with −2-types being contractible).

Truncation

Theorem (UFP)

For any type X, there is a proposition ‖X‖ and a map | · | : X→ ‖X‖ and
such that

X P

‖X‖

∀

|·|
∃!

for any proposition P.

‖(a : A)× B(a)‖ represents the proposition ∃a : A.B(a).

If c : A, then (a : A)× ‖a = c‖ is all elements of A which are
identifiable with c.

Truncation

Theorem (UFP)

For any type X, there is a proposition ‖X‖ and a map | · | : X→ ‖X‖ and
such that

X P

‖X‖

∀

|·|
∃!

for any proposition P.

‖(a : A)× B(a)‖ represents the proposition ∃a : A.B(a).

If c : A, then (a : A)× ‖a = c‖ is all elements of A which are
identifiable with c.

Truncation

Theorem (UFP)

For any type X, there is a proposition ‖X‖ and a map | · | : X→ ‖X‖ and
such that

X P

‖X‖

∀

|·|
∃!

for any proposition P.

‖(a : A)× B(a)‖ represents the proposition ∃a : A.B(a).

If c : A, then (a : A)× ‖a = c‖ is all elements of A which are
identifiable with c.

Part 2: Higher Groups

Higher Groups

A group is the collection of symmetries of an object.

The symmetric group Aut(n) is the type of symmetries of an
n-element set:

Aut(n) = {1, . . . , n} =Set {1, . . . , n}

The general linear group GLn(R) is the type of linear symmetries of
Rn:

GLn(R) = Rn =VectR Rn

The dihedral group D2n is the type of symmetries of an n-gon in the
plane.

. . .

Higher Groups

A group is the collection of symmetries of an object.

The symmetric group Aut(n) is the type of symmetries of an
n-element set:

Aut(n) = {1, . . . , n} =Set {1, . . . , n}

The general linear group GLn(R) is the type of linear symmetries of
Rn:

GLn(R) = Rn =VectR Rn

The dihedral group D2n is the type of symmetries of an n-gon in the
plane.

. . .

Higher Groups

A group is the collection of symmetries of an object.

The symmetric group Aut(n) is the type of symmetries of an
n-element set:

Aut(n) = {1, . . . , n} =Set {1, . . . , n}

The general linear group GLn(R) is the type of linear symmetries of
Rn:

GLn(R) = Rn =VectR Rn

The dihedral group D2n is the type of symmetries of an n-gon in the
plane.

. . .

Higher Groups

A group is the collection of symmetries of an object.

The symmetric group Aut(n) is the type of symmetries of an
n-element set:

Aut(n) = {1, . . . , n} =Set {1, . . . , n}

The general linear group GLn(R) is the type of linear symmetries of
Rn:

GLn(R) = Rn =VectR Rn

The dihedral group D2n is the type of symmetries of an n-gon in the
plane.

. . .

Let BAut(n) :≡ (X : Set)× ‖X = {1, . . . , n}‖ be the type of
n-element sets, pointed at {1, . . . , n}. Then

Aut(n) = Ω BAut(n)

Let BGLn(R) :≡ (V : VectR)× ‖V = Rn‖ be the type of
n-dimensional vector spaces, pointed at Rn. Then

GLn(R) = Ω BGLn(R)

Definition

For a : A, define
BAutA(a) :≡ (b : A)× ‖b = a‖

be the type of things identifiable with a, pointed at a. Then

AutA(a) ≡ a =A a = Ω BAutA(a)

Let BAut(n) :≡ (X : Set)× ‖X = {1, . . . , n}‖ be the type of
n-element sets, pointed at {1, . . . , n}. Then

Aut(n) = Ω BAut(n)

Let BGLn(R) :≡ (V : VectR)× ‖V = Rn‖ be the type of
n-dimensional vector spaces, pointed at Rn. Then

GLn(R) = Ω BGLn(R)

Definition

For a : A, define
BAutA(a) :≡ (b : A)× ‖b = a‖

be the type of things identifiable with a, pointed at a. Then

AutA(a) ≡ a =A a = Ω BAutA(a)

Let BAut(n) :≡ (X : Set)× ‖X = {1, . . . , n}‖ be the type of
n-element sets, pointed at {1, . . . , n}. Then

Aut(n) = Ω BAut(n)

Let BGLn(R) :≡ (V : VectR)× ‖V = Rn‖ be the type of
n-dimensional vector spaces, pointed at Rn. Then

GLn(R) = Ω BGLn(R)

Definition

For a : A, define
BAutA(a) :≡ (b : A)× ‖b = a‖

be the type of things identifiable with a, pointed at a. Then

AutA(a) ≡ a =A a = Ω BAutA(a)

∞-Groups

Definition

An ∞-group is a type G identified with the loops of a pointed, connected
type BG (the delooping of G).

∞Group :≡ (G : Type)× (BG : Type>0
∗)× G = Ω BG

= Type>0
∗ .

Definition

An abstract group is a set G equipped with associative, unital, and
invertible binary operation.

Groups are ∞-Groups

Definition

For any abstract group G, the type

BG :≡ {G-torsors}

is connected, and pointed at G has

Ω BG = G.

Definition

A homomorphism of ∞-groups is a pointed map between their deloopings:

BG ·−→ BH :≡ (f : BG→ BH)× (f(ptBG) = ptBH)

Consider f ≡ X 7→ X + 1 : BAut(n) ·−→ BAut(n + 1),
I pointed by e : {1, . . . , n}+ {n + 1} = {1, . . . , n + 1}.

I Then Ωf :≡ p 7→ e -1 ·f∗(p) · e : Aut(n)→ Aut(n + 1) is the inclusion.

Consider f ≡ V 7→ ΛnV : BGLn(R) ·−→ BGL1(R),
I pointed by e1 ∧ · · · ∧ en 7→ 1 : Λn Rn = R.
I Then Ωf = det takes the determinant.

Definition

A homomorphism of ∞-groups is a pointed map between their deloopings:

BG ·−→ BH :≡ (f : BG→ BH)× (f(ptBG) = ptBH)

Consider f ≡ X 7→ X + 1 : BAut(n) ·−→ BAut(n + 1),
I pointed by e : {1, . . . , n}+ {n + 1} = {1, . . . , n + 1}.
I Then Ωf :≡ p 7→ e -1 ·f∗(p) · e : Aut(n)→ Aut(n + 1) is the inclusion.

Consider f ≡ V 7→ ΛnV : BGLn(R) ·−→ BGL1(R),
I pointed by e1 ∧ · · · ∧ en 7→ 1 : Λn Rn = R.
I Then Ωf = det takes the determinant.

Definition

A homomorphism of ∞-groups is a pointed map between their deloopings:

BG ·−→ BH :≡ (f : BG→ BH)× (f(ptBG) = ptBH)

Consider f ≡ X 7→ X + 1 : BAut(n) ·−→ BAut(n + 1),
I pointed by e : {1, . . . , n}+ {n + 1} = {1, . . . , n + 1}.
I Then Ωf :≡ p 7→ e -1 ·f∗(p) · e : Aut(n)→ Aut(n + 1) is the inclusion.

Consider f ≡ V 7→ ΛnV : BGLn(R) ·−→ BGL1(R),
I pointed by e1 ∧ · · · ∧ en 7→ 1 : Λn Rn = R.

I Then Ωf = det takes the determinant.

Definition

A homomorphism of ∞-groups is a pointed map between their deloopings:

BG ·−→ BH :≡ (f : BG→ BH)× (f(ptBG) = ptBH)

Consider f ≡ X 7→ X + 1 : BAut(n) ·−→ BAut(n + 1),
I pointed by e : {1, . . . , n}+ {n + 1} = {1, . . . , n + 1}.
I Then Ωf :≡ p 7→ e -1 ·f∗(p) · e : Aut(n)→ Aut(n + 1) is the inclusion.

Consider f ≡ V 7→ ΛnV : BGLn(R) ·−→ BGL1(R),
I pointed by e1 ∧ · · · ∧ en 7→ 1 : Λn Rn = R.
I Then Ωf = det takes the determinant.

Schreier Theory: Classifying Extensions

Lemma

For groups F and G the type of extensions F→ E→ G of G by F is
equivalent to the type of fiber sequences BF ·−→BE ·−→BG.

Theorem (Schreier Theory for ∞-groups)

Let F and G be ∞-groups, then

{Extensions of G by F} = BG ·−→ BAut(BF)

Schreier Theory: Classifying Extensions

Lemma

For groups F and G the type of extensions F→ E→ G of G by F is
equivalent to the type of fiber sequences BF ·−→BE ·−→BG.

Theorem (Schreier Theory for ∞-groups)

Let F and G be ∞-groups, then

{Extensions of G by F} = BG ·−→ BAut(BF)

Schreier Theory: Classifying Extensions

Theorem (Schreier Theory for ∞-groups)

Let F and G be ∞-groups, then

{Extensions of G by F} = BG ·−→ BAut(BF)

Corollary

For any group G,

{Extensions of Z by G}/∼= = Out(G)

References

“Homotopy Type Theory”, The Univalent Foundations Project, 2013.

“Lectures on n-Categories and Cohomology”, Baez and Shulman,
2007.

“Higher Groups in Homotopy Type Theory”, Buchholtz, van Dorn,
and Rijke, 2018.

