
What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Recursively, Rethinking Corecursively

David Jaz Myers

June 19, 2017

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Mathematical Metaphors

This talk will be about two specific mathematical metaphors, but

what are mathematical metaphors,

why make them,

and how can they be misused?

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Mathematical Metaphors

In this talk, we will look closely at the mathematical metaphor
between

Complex Systems and Recursive Functions

We will see how this metaphor a lot of standard theories in science
and philosophy, usually those that fall under the rubrik of “realism”.
We will also find that this metaphor can lead us to some shaky
philosophical positions.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

What is a function

A function is a process that turns an input into an output.

F(input) = output

If a function takes inputs of a type Inputs and gives outputs of a
type Outputs, we write

F : Inputs→ Outputs

For example,

F : Numbers→ Numbers

F(n) = 2n + 1

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

What is Recursion?

A function is recursive when its output on a complicated input is
determined by its output on simpler inputs.

Ultimately, the output of a recursive function is determined by its
simplest inputs.

We call these simplest inputs atoms, or base cases, and the rules
for building them up constructors.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

What is Recursion?

So to define a recursive function we need

to know how to break apart complicated inputs into simpler
ones,

simplest inputs (so we eventually stop breaking things apart),

to know how to put outputs together in a way that relates to
taking inputs apart!

Or, more pithily, we need:

to know how to analyze inputs,

into their atomic components,

so that we can construct outputs.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

A Lengthy Example

Let’s calculate the length of a list! This is a function which takes a
list as input and gives a number as output.

Length : Lists→ Numbers

A list is something like:

[first item, second item, third item . . . last item]

We can break down a list like this:

A List = [first item, Rest of the List]

or the list is Empty.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

A Lengthy Example

Let’s calculate the length of a list! This is a function which takes a
list as input and gives a number as output.

Length : Lists→ Numbers

Numbers can be built up by counting:

0 is a number, and

(1 + a number) is a number.

This is related to taking lists apart because, secretly, numbers are
like lists of tally marks:

4 =

∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣,

∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

A Lengthy Example

Definition (Length of a List)

The length of a list is given by the function defined by:

Length(Empty) ≡ 0

Length([first item,Rest of List]) ≡ 1 + Length(Rest of List)

This works because

Empty is an atom. There are no simpler lists, so we can stop
breaking things apart.

The Rest of the List is simpler (i.e. smaller) than the list we
started with. This means we eventually get to the Empty list.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Running a Recursive Program

We can run a recursive program greedily:

Every time we see something we don’t understand, we compute it.

Length([1, 2, 3]) = 1 + Length([2, 3])

= 1 + (1 + Length([3]))

= 1 + (1 + (1 + Length(Empty)))

= 1 + (1 + (1 + 0))

= 1 + (1 + 1)

= 1 + 2

= 3

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Recursively About Everything

This way of thinking should be familiar to you from popular ways of
thinking about physics.

Claim
Physics is like a recursive function

Physics : Systems→ Systems

which recurses all the way to the fundamental particles, and then
builds more complicated phenomena out of the way they behave.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Recursively About Everything

Or from philosophy of language:

Claim
Meaning is like a recursive function

Meaning : Utterances→ Meanings

which builds the meaning of, say, sentences out of the meaning of
words.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Recursively About Everything

Or from sociology

Claim
A society is like a recursive function

Society : Societies→ Societies

which is determined by the behavior of individuals which are, of
course, indivisible.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Recursively About Everything

Or from economics

Claim
The economy is like a recursive function

Economy : Markets→ Markets

which is determined by the behavior of agents who act rationally.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Analysis is Recursive

Definition
[Analysis] might be defined as a process of isolating or
working back to what is more fundamental by means of
which something, initially taken as given, can be
explained or reconstructed. – Stanford Encyclopedia

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

A Philosophical Problem

In his book The Case for Idealism, John Foster argues that some
things must have inscrutable, intrinsic properties.

Foster’s argument for inscrutable intrinsic properties

Suppose that all properties of all things were extrinsic, that is,
defined in relation to other things.

A)
)) (((B

Now, consider a world containing two things, A and B, each
defined only by their disposition to repel the other.

Foster claims this leads to an infinite regress, and therefore a
contradiction.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

A Philosophical Problem

Foster’s argument for inscrutable intrinsic properties (cont’d)

The back and forth must stop somewhere:

“A is the thing which . . . X ”

X is the end of the line, it is not defined in relation to anything else.
Therefore, it is both

inscrutable, and

intrinsic.

This argument rests on two (recursive) assumptions:
1 We must ‘evaluate’ greedily.
2 There must be a base case.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Do We Have to Make Those Assumptions?

. . . is there another way?

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Corecursion

A function is corecursive when its output is determined by simpler
outputs.

We call the rules for breaking apart the output observers.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

What is Corecursion

So, to define a corecursive function we need

to know how to observe the output of our function in simpler
ways,

that relate to how we observe our inputs!

We can think of the observers as being experimental setups with
which we will test the output of our function.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

What is Corecursion

The main idea behind corecursion is:

If we know how our function behaves in all experimental
setups, we know what it does.

This is essentially the same as one of the fundamental principles
of science:

If we can predict how something behaves in all experimental
setups, then we know what it is.

So long as we believe that a function is what it does.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Stream and Chill

Let’s have some fun with streams to get our heads around
corecursion.

A stream is an infinite list, so we can’t keep the whole thing in
memory, but we can observe it piece by piece.

So, let’s set up two experiments:
1 Head, where we test what the first thing in the stream is.
2 Tail, where we see what’s left.

Now we can define functions corecursively, since we know how to
observe their behavior.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Stream and Chill

Let’s define a function

Every Other : Streams→ Streams

that will take a stream and return the stream of only every other
value. For example:

Every Other(0, 1, 2, 3, 4, . . .) = (0, 2, 4, . . .)

To define this, we just need to define how it looks in all the
experiments.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Stream and Chill

Definition (The Every Other Function)

Define the Every Other function by

EO(stream).Head = stream.Head

EO(stream).Tail = EO(stream.Tail.Tail)

This works because

EO(stream) is covered by the observers Head and Tail, they
tell us all we need to know about it.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Running a Corecursive Program

We can’t evaluate a corecursive program greedily, because the
calculation would never end! We have to be lazy:

Only compute things when we absolutely need to.

So if you wrote down

EO((0, 1, 2, 3, ...))

That would be totally chill.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Running a Corecursive Program

But, if we want to know a specific value of EO((0, 1, 2, 3, . . .)), then
we can calculate

EO((0, 1, 2, 3, . . .)).Tail.Tail.Head

= EO((0, 1, 2, 3, . . .).Tail.Tail).Tail.Head

= EO((0, 1, 2, 3, . . .).Tail.Tail.Tail.Tail).Head

= (0, 1, 2, 3, . . .).Tail.Tail.Tail.Tail.Head

= (1, 2, 3, 4, . . .).Tail.Tail.Tail.Head

= (2, 3, 4, 5, . . .).Tail.Tail.Head

= (3, 4, 5, 6 . . .).Tail.Head

= (4, 5, 6, 7 . . .).Head

= 4

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Corecursion and Différance

If someone asks you what “EO” means, you could tell them that its
meaning is deferred until we test it with the observers Head and
Tail.

If they ask you what “Head” and “Tail” mean, you could only tell
them the different ways you end up using them.

Definition
Différance is Derrida’s pun on the words defer and differ.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Thinking Corecursively

Who am I?

How can I find out?

Do I have to find my ‘true self’, the core of my being, to know who I
am?

Or do I only have to look at the way I affect the people and places
around me?

Thinking corecursively, we don’t have to be anxious about finding
our true selves.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Revisiting Foster

Let’s look back at Foster’s argument for inscrutable intrinsic
properties. He claims that the world in which

A only repels B and B only repels A

cannot exist because it leads to an infinite regress.

Only leads to infinite regress if we are greedy.

If we are lazy, this is a perfectly fine definition.

There is nothing inscrutable about it.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Revisiting Foster

Foster’s argument shows a fundamental confusion that often
underlies recursive thinking:

the confusion between names and things

Names are like atoms, we don’t break them apart.

Things (such as functions) can be named, even when we
define them corecursively.

But that doesn’t mean that they have base cases!

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Limits of the Metaphor

To define a function corecursively, we must cover it by observers.

Head and Tail tell us all there is to know about a stream.

But in the informal world, we never have access to all the contexts
in which an object appears,

We can never get all sides of the story.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Going Forward: Physics

Physicists have been thinking corecursively for a long time:

A physical quantity can only be assigned specific values given
a local coordinate system, or gauge.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Going Forward: Physics

Principle of Relativity

The physical laws have the same form in all choices of gauge.

A change in gauge is called a gauge symmetry.

In other words, if we rotate our experimental setup, we get a
rotated result.

Ψ.r(X) = r(Ψ.X)

The relationship between the observations Ψ.X and Ψ.r(X)
depends on how X was rotated to r(X).

To fully know an object, we must not only know how it behaves in
various contexts,

we must also know how those contexts relate.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

In Conclusion

Thinking recursively makes us believe that

There are basic objects and basic truths about them at the
bottom of all phenomena, and

To know anything at all, we need to know about these basic
things.

Thinking corercursively makes us believe that

Things only make sense in context (in an experiment, relative
to an observer, etc.), and

Knowing how a thing behaves in context is all there is to know
about it

There are no basic objects or basic truths

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

Bridging the Divide

In this talk, I made a stark division between recursive and
corecursive thinking.

But in actually programming languages (like Haskell), you can use
recursion and corecursion together depending on which is more
convenient.

We should use recursive and corecursive thinking together,
depending on what needs to be done.

But most importantly, we need to remember that metaphors matter.

Don’t get trapped in a single metaphor

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

References I

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton
Setzer, Copatterns: Programming infinite structures by
observations, SIGPLAN Not. 48 (2013), no. 1, 27–38.

Michael Beaney, Analysis, The Stanford Encyclopedia of
Philosophy (Edward N. Zalta, ed.), spring 2015 ed., 2015.

J. Rutten. C. Kupke, M. Niqui, Stream differential equations:
concrete formats for coinductive definitions., Technical Report
No. RR-11-10 (2011), 1 – 28.

Barry Dainton, Time and space: Second edition,
Mcgill-Queens University Press, 2010.

Dexter Kozen and Alexandra Silva, Practical Coinduction,
2014.

David Jaz Myers Thinking Recursively, Rethinking Corecursively



What is Recursion?
Thinking Recursively

There is Another Way
Thinking Corecursively

References II

J. Rutten, An introduction to (co)algebra and (co)induction.,
Advanced topics in bisimulation and coinduction. (D. Sangiorgi
and J. Rutten, eds.), Cambridge University Press, Cambridge,
2011.

David Jaz Myers Thinking Recursively, Rethinking Corecursively


	What is Recursion?
	Thinking Recursively
	There is Another Way
	Thinking Corecursively

